基于LS-DYNA的SPH-FEM火箭橇垂直水戽斗流固耦合仿真研究

张宁, 董龙雷, 吕水燕, 刘洋, 付良

装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 1-9.

PDF(5082 KB)
PDF(5082 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 1-9. DOI: 10.7643/ issn.1672-9242.2025.11.001
武器装备

基于LS-DYNA的SPH-FEM火箭橇垂直水戽斗流固耦合仿真研究

  • 张宁1,2, 董龙雷1, 吕水燕2, 刘洋2, 付良2
作者信息 +

SPH-FEM Coupled Fluid-structure Interaction Simulation of Vertical Water Brake in Rocket Sled via LS-DYNA

  • ZHANG Ning1,2, DONG Longlei1, LYU Shuiyan2, LIU Yang2, FU Liang2
Author information +
文章历史 +

摘要

目的 更准确地得出火箭橇垂直水戽斗在超音速条件下,对不同水层的完整刹车过程的力学响应特性。方法 采用HyperMesh划分高质量的有限元网格,基于LS-DYNA,采用FEM模拟垂直水戽斗的有限元模型,采用无网格的SPH粒子模拟长柱形水域粒子在刹车时的飞散过程,对火箭橇垂直水戽斗与水层之间的交互行为进行数值模拟仿真,得出垂直水戽斗在运动过程中的最大应力点,以及应力变化的全过程时域响应和不同工况下戽斗刹车力的理论-仿真误差特性,并结合火箭橇垂直水戽斗刹车试验数据结果,验证不同工况下戽斗刹车力的仿实误差特性的结果。结果 通过数据分析可以发现,仿真结果的平均误差和最大误差分别为6%和10%。结论 结合理论推导、模拟仿真与试验测试,验证了基于LS-DYNA的SPH-FEM流固耦合的数值模拟方法能有效预测火箭橇垂直水戽斗完整刹车过程中的力学响应。

Abstract

The work aims to accurately simulate the mechanical response characteristics of a vertical water brake under supersonic conditions during the complete deceleration process across different water layers. HyperMesh was used to generate high-quality finite element meshes and FEM in LS-DYNA was employed to model the vertical water brake structure, while the meshless SPH method was adopted to simulate the splashing dynamics of the cylindrical water column during braking. Through this coupled SPH-FEM numerical approach, the FSI between the vertical water brake and the water layer was analyzed, including the maximum stress points of the water brake during motion, time-domain responses of stress variations throughout the process and theoretical-simulation error characteristics of braking force under different working conditions. Experimental data from rocket sled tests were further used to validate the simulated braking force errors across scenarios. Data analysis revealed that the average error and maximum error of the simulation results were 6% and 10% respectively, leading to a conclusion with clear engineering guiding value. By combining theoretical derivation, simulation, and experimental testing, the effectiveness of the SPH-FEM fluid-structure interaction numerical simulation method based on LS-DYNA in predicting the mechanical response during the complete braking process of the vertical water brake for rocket sleds is verified.

关键词

火箭橇 / 水戽斗 / LS-DYNA / SPH-FEM方法 / 流固耦合 / 动态响应

Key words

rocket sled / water brake / LS-DYNA / SPH-FEM method / fluid-structure interaction / dynamic response

引用本文

导出引用
张宁, 董龙雷, 吕水燕, 刘洋, 付良. 基于LS-DYNA的SPH-FEM火箭橇垂直水戽斗流固耦合仿真研究[J]. 装备环境工程. 2025, 22(11): 1-9 https://doi.org/10.7643/ issn.1672-9242.2025.11.001
ZHANG Ning, DONG Longlei, LYU Shuiyan, LIU Yang, FU Liang. SPH-FEM Coupled Fluid-structure Interaction Simulation of Vertical Water Brake in Rocket Sled via LS-DYNA[J]. Equipment Environmental Engineering. 2025, 22(11): 1-9 https://doi.org/10.7643/ issn.1672-9242.2025.11.001
中图分类号: TJ03   

参考文献

[1] 余元元. 双轨火箭滑车高速水刹装置研究[D]. 南京: 南京航空航天大学, 2008.
YU Y Y.Research on High-Speed Water Brake Device of Double-Track Rocket Pulley[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[2] 夏有财, 孔维红, 孙其会, 等. 两级推进单轨火箭橇试验研究[J]. 航空动力学报, 2025, 40(3): 489-495.
XIA Y C, KONG W H, SUN Q H, et al.Experimental Study on Two-Stage Propulsion Monorail Rocket Sled[J]. Journal of Aerospace Power, 2025, 40(3): 489-495.
[3] WORTHINGTON A M, COLE R S.Impact with a Liquid Surface Studied by the Aid of Instantaneous Photography. Paper II[J]. Philosophical Transactions of the Royal Society B, 1900, 194: 175-99.
[4] Von KARMAN T.The Impact of Seaplane Floats during Land-ing[J]. Technical Report Archive & Image Library, 1929(321): 309-313.
[5] CHEN T, HUANG W, ZHANG W, et al.Experimental Investigation on Trajectory Stability of High-Speed Water Entry Projectiles[J]. Ocean Engineering, 2019, 175: 16-24.
[6] 顾建农, 张志宏, 范武杰. 旋转弹丸入水侵彻规律[J]. 爆炸与冲击, 2005, 25(4): 341-349.
GU J N, ZHANG Z H, FAN W J.Experimental Study on the Penetration Law for a Rotating Pellet Entering Water[J]. Explosion and Shock Waves, 2005, 25(4): 341-349.
[7] CHEN A R, LI X D, ZHOU L W, et al.Experimental Study on the Cavity Evolution and Liquid Spurt of Hydrodynamic Ram[J]. Defence Technology, 2022, 18(11): 2008-2022.
[8] REN K R, PENG Y, MIAO J T, et al.Dynamic Responses of Liquid-Filled Vessels Impacted by a High-Velocity Projectile[J]. International Journal of Mechanical Sciences, 2025, 285: 109811.
[9] JI Y, LI X D, ZHOU L W, et al.Comparison of the Hydrodynamic Ram Caused by One and Two Projectiles Impacting Water-Filled Containers[J]. International Journal of Impact Engineering, 2020, 137: 103467.
[10] LIU X Y, CAI X W, HUANG Z G, et al.Comparative Study on the Oblique Water-Entry of High-Speed Projectile Based on Rigid-Body and Elastic-Plastic Body Model[J]. Defence Technology, 2025, 46: 133-155.
[11] SEDDON C M, MOATAMEDI M.Review of Water Entry with Applications to Aerospace Structures[J]. International Journal of Impact Engineering, 2006, 32(7): 1045-1067.
[12] 王瑞琦, 黄振贵, 朱世权, 等. 平头弹丸入水空泡闭合实验研究及数值模拟[J]. 兵器装备工程学报, 2017, 38(12): 36-39.
WANG R Q, HUANG Z G, ZHU S Q, et al.Experimental and Numerical Study of Cavity Closure of Flat Projectile Entering Water[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 36-39.
[13] 黄振贵, 范浩伟, 陈志华, 等. 空心弹高速入水机理及特性数值模拟研究[J]. 爆炸与冲击, 2024, 44(1): 117-131.
HUANG Z G, FAN H W, CHEN Z H, et al.Numerical Simulation Study on the Mechanism and Characteristics of Highspeed Water Entry of Hollow Projectiles[J]. Explosion and Shock Waves, 2024, 44(1): 117-131.
[14] 周杰, 徐胜利. 弹丸入水特性的SPH计算模拟[J]. 爆炸与冲击, 2016, 36(3): 326-332.
ZHOU J, XU S L.SPH Simulation on the Behaviors of Projectile Water Entry[J]. Explosion and Shock Waves, 2016, 36(3): 326-332.
[15] 高英杰, 刚旭皓. 基于SPH-FEM耦合方法的回转体高速入水数值研究[J]. 舰船科学技术, 2022, 44(17): 6-11.
GAO Y J, GANG X H.Numerical Analysis of High Speed Water-Entry of the Revolution Body Based on SPH-FEM Coupling Method[J]. Ship Science and Technology, 2022, 44(17): 6-11.
[16] 陈震, 肖熙. 二维楔形体入水砰击仿真研究[J]. 上海交通大学学报, 2007, 41(9): 1425-1428.
CHEN Z, XIAO X.The Simulation Study on Water Entry of 2D Wedge Bodies[J]. Journal of Shanghai Jiao Tong University, 2007, 41(9): 1425-1428.
[17] GONG K, LIU H, WANG B L.Water Entry of a Wedge Based on SPH Model with an Improved Boundary Treatment[J]. Journal of Hydrodynamics, Ser B, 2009, 21(6): 750-757.
[18] WANG L, XU F, YANG Y.Research on Water Entry Problems of Gas-Structure-Liquid Coupling Based on SPH Method[J]. Ocean Engineering, 2022, 257: 111623.
[19] 张义群. 基于SPH的流体模拟中流固边界及液体表面处理算法的研究[D]. 合肥: 合肥工业大学, 2020.
ZHANG Y Q.Research on Fluid-Solid Boundary and Liquid Surface Treatment Algorithm In Fluid Simulation Based on SPH[D]. Hefei: Hefei University of Technology, 2020.
[20] 张小锋. 基于SPH的楔形板砰击入水特性研究[D]. 武汉: 华中科技大学, 2019.
ZHANG X F.Study on Characteristics of Wedge-Shaped Plate Slamming into Water Based on SPH[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[21] 丁宁, 王鑫博. 基于SPH法的返回舱入水载荷模拟分析[J]. 计算力学学报, 2023, 40(6): 963-971.
DING N, WANG X B.Simulation Analysis on Water Entry Loads of a Space Capsule Based on SPH Method[J]. Chinese Journal of Computational Mechanics, 2023, 40(6): 963-971.
[22] LYU H G, SUN P N, HUANG X T, et al.On Removing the Numerical Instability Induced by Negative Pressures in SPH Simulations of Typical Fluid-Structure Interaction Problems in Ocean Engineering[J]. Applied Ocean Research, 2021, 117: 102938.
[23] 王健, 赵庆彬, 陶钢, 等. 火箭橇水刹车高速入水冲击数值模拟[J]. 爆炸与冲击, 2010, 30(6): 628-632.
WANG J, ZHAO Q B, TAO G, et al.Numerical Simulation on Rocket Sled Water-Brake High-Speed Water-Entry Impact[J]. Explosion and Shock Waves, 2010, 30(6): 628-632.
[24] 王健, 张旭光, 孔维红. 火箭橇水刹车高速冲击入水安全性分析[J]. 南京理工大学学报, 2013, 37(6): 902-906.
WANG J, ZHANG X G, KONG W H.Safety Analysis on Rocket Sled Water Brake High-Speed Water-Entry Impact[J]. Journal of Nanjing University of Science and Technology, 2013, 37(6): 902-906.
[25] 刘军, 殷之平, 丁国元, 等. 火箭橇水刹车戽斗入水运动的阻力预测[J]. 航空工程进展, 2015, 6(3): 312-318.
LIU J, YIN Z P, DING G Y, et al.Resistance Forecast of Water Bags in Braking Trays of a Rocket Sled on the Process Movement[J]. Advances in Aeronautical Science and Engineering, 2015, 6(3): 312-318.
[26] 徐赵. 火箭滑橇水刹车条件下的结构力学数值分析[D]. 南京: 南京理工大学, 2013.
XU Z.Numerical Analysis of Structural Mechanics under the Condition of Water Braking of Rocket Sled[D]. Nanjing: Nanjing University of Science and Technology, 2013.
[27] 李新颖, 肖军, 张家旭, 等. 基于CFD的火箭滑橇水刹车水动性能分析[J]. 系统仿真技术, 2021, 17(1): 37-42.
LI X Y, XIAO J, ZHANG J X, et al.Analysis on Hydrodynamic Performance of Rocket Sled Water Brake Based on CFD[J]. System Simulation Technology, 2021, 17(1): 37-42.
[28] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8): 46-52.
LI X J, ZHANG C J, WANG X H, et al.Numerical Study on the Effect of Equations of State of Water on Underwater Explosions[J]. Engineering Mechanics, 2014, 31(8): 46-52.

PDF(5082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/